Structural insights of homotypic interaction domains in the ligand-receptor signal transduction of tumor necrosis factor (TNF)
نویسندگان
چکیده
Several members of tumor necrosis factor receptor (TNFR) superfamily that these members activate caspase-8 from death-inducing signaling complex (DISC) in TNF ligand-receptor signal transduction have been identified. In the extrinsic pathway, apoptotic signal transduction is induced in death domain (DD) superfamily; it consists of a hexahelical bundle that contains 80 amino acids. The DD superfamily includes about 100 members that belong to four subfamilies: death domain (DD), caspase recruitment domain (CARD), pyrin domain (PYD), and death effector domain (DED). This superfamily contains key building blocks: with these blocks, multimeric complexes are formed through homotypic interactions. Furthermore, each DD-binding event occurs exclusively. The DD superfamily regulates the balance between death and survival of cells. In this study, the structures, functions, and unique features of DD superfamily members are compared with their complexes. By elucidating structural insights of DD superfamily members, we investigate the interaction mechanisms of DD domains; these domains are involved in TNF ligand-receptor signaling. These DD superfamily members play a pivotal role in the development of more specific treatments of cancer. [BMB Reports 2016; 49(3): 159-166].
منابع مشابه
Structural basis of signal transduction in the TNF receptor superfamily.
Members of the tumor necrosis factor receptor superfamily play key roles in innate and adaptive immunity. Here, we review recent structural studies in the intracellular signal transduction of these receptors. A central theme revealed from these structural studies is that upon ligand binding, multiple intracellular proteins form higher-order signaling machines to transduce and amplify receptor a...
متن کاملSerum OX40 ligand: a potential marker of atopic dermatitis disease severity in children
INTRODUCTION The tumor necrosis factor receptor (TNFR) family consists of a number of type I transmembrane glycoproteins characterized by homologous cysteine-rich domains in their extracellular region. The intracellular parts of these proteins vary in size and structure, corresponding to the wide array of functions of TNFR proteins, ranging from regulation of cell activation and differentiation...
متن کاملStructural revelations of TRAF2 function in TNF receptor signaling pathway.
The tumor necrosis factor (TNF) receptor (TNFR) superfamily consists of over 20 type-I transmembrane proteins with conserved N-terminal cysteine-rich domains (CRDs) in the extracellular ligand binding region, which are specifically activated by the corresponding superfamily of TNF-like ligands. Members of this receptor superfamily have wide tissue distribution and play important roles in biolog...
متن کاملStructural and mechanistic insights into VEGF receptor 3 ligand binding and activation.
Vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs) are key drivers of blood and lymph vessel formation in development, but also in several pathological processes. VEGF-C signaling through VEGFR-3 promotes lymphangiogenesis, which is a clinically relevant target for treating lymphatic insufficiency and for blocking tumor angiogenesis and metastasis. The extracellular domain...
متن کاملAssembly of post-receptor signaling complexes for the tumor necrosis factor receptor superfamily.
The tumor necrosis factor (TNF) receptor (TNFR) superfamily comprises more than 20 type-I transmembrane proteins that are structurally related in their extracellular domains and specifically activated by the corresponding superfamily of TNF-like ligands. Members of this receptor superfamily are widely distributed and play important roles in many crucial biological processes such as lymphoid and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 49 شماره
صفحات -
تاریخ انتشار 2016